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Consider standard Gaussian probability measure γ on Euclidean
state space (Rn, ‖ · ‖):

γ(dx) = (2π)−n/2 e−‖x‖
2/2 dx .

Invariant measure of Ornstein-Uhlenbeck process solution to SDE{
dX x

t =
√

2 dBt − X x
t dt

X x
0 = x

where (Bt)t≥0 Brownian motion in Rn.

Associated semigroup gives the distribution at time t > 0 of the
process: for f ∈ Cb(Rn),

Pt f (x) := E[f (X x
t )] =

∫
Rn

f (xe−t +
√

1− e−2ty) γ(dy).
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Markov semigroup:

Pt ◦ Ps = Ps ◦ Pt = Pt+s and P0 = Id.

Invariance with respect to γ:∫
Rn

Pt f dγ =

∫
Rn

f dγ =: γ(f ).

Long-time convergence to equilibrium: for any x ∈ Rn,

Pt f (x) −→
t→+∞

γ(f ), f ∈ Cb(Rn).

Questions:

• speed of convergence ? (concerns time variable t)

• In which space ? (concerns space variable x)
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Associated generator (derivative at time t = 0 of the semigroup):

Lf (x) = ∆f (x)− x · ∇f (x).

As a diffusion operator, L is non-positive and self-adjoint in L2(γ):∫
Rn

f Lg dγ =

∫
Rn

Lf g dγ = −
∫
Rn

∇f · ∇g dγ.

Poincaré inequality with constant λ > 0: for all smooth
f : Rn → R,

λVarγ(f ) ≤
∫
Rn

‖∇f ‖2 dγ PI(λ)

where Varγ(f ) := γ(f 2)− γ(f )2.
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PI(λ) rewrites as

λ ≤
∫
Rn

f (−Lf ) dγ,

for all smooth f such that γ(f ) = 0 and γ(f 2) = 1.

Optimal constant λ given by variational formula

inf

{∫
Rn

f (−Lf ) dγ : f smooth, γ(f ) = 0, γ(f 2) = 1

}
.

We have:

PI(λ) ⇐⇒ Spectrum(−L) ⊂ {0} ∪ [λ,∞).

Optimal constant denoted λ1(−L, γ): spectral gap of −L.
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Link with convergence to equilibrium in L2(γ):

PI(λ) ⇐⇒ ‖Pt f − γ(f )‖L2(γ)
(?)

≤ e−λt ‖f − γ(f )‖L2(γ) , ∀f smooth.

Proof:

Inequality (?) rewrites as

Varγ(Pt f ) ≤ e−2λt Varγ(f ), ∀f smooth.

Let f smooth such that γ(f ) = 0 and denote

φ(t) :=

∫
Rn

(Pt f )2 dγ.
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⇐= : inequality (?) means

φ(t) ≤ e−2λt φ(0),

which implies
φ′(0) ≤ −2λφ(0),

i.e., PI(λ).

=⇒ : apply PI(λ) with Pt f (instead of f ) to get

φ′(t) ≤ −2λφ(t),

and Gronwall’s lemma entails

φ(t) ≤ e−2λt φ(0),

i.e. inequality (?).
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Two important facts :

• Standard Gaussian measure is a product measure.

• Poincaré inequality tensorizes, i.e, Poincaré inequality for a
one-dimensional measure entails Poincaré inequality for the
product measure with the same constant.

=⇒ The reason why in the Gaussian case, if λ1(−L, γ) > 0, then
it should not depend on dimension n.
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Theorem

In the Gaussian case, we have

Spectrum (−L, γ) = N,

and the eigenfunctions are the Hermite polynomials. In particular
λ1(−L, γ) = 1 and the associated eigenfunction is linear.
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Generalization of Gaussian measure: exponential power distribution
of parameter α > 0,

µ(dx) =
1

Z
e−‖x‖

α/α dx , x ∈ Rn.

• α = 1: exponential measure.

• α = 2: Gaussian case.

• α→∞: uniform distribution on the Euclidean unit ball.

=⇒ Product measure iff α = 2.

Associated generator:

Lf (x) =

{
∆f (x)− ‖x‖α−2 x · ∇f (x) on Rn if 0 < α <∞;

∆f (x) on Bn if α =∞,

the latter endowed with Neumann’s conditions at the boundary
Sn−1.
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A general result:

Theorem

λ1(−L, µ) > 0 ⇐⇒ α ≥ 1.

In particular, what is the dependence of λ1(−L, µ) w.r.t.
dimension n ?

For n = 1, the spectral gap is known only for:

• α = 1: λ1(−L, µ) = 1/4.

• α = 2: λ1(−L, µ) = 1.

• α→∞: λ1(−L, µ) = π2/4.
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A measure µ is called:

• log-concave if

µ(dx) =
1

Z
e−V (x) dx ,

where V : Rn → R is convex.

• spherically symmetric log-concave (including exponential power
distributions) if

µ(dx) =
1

Z
e−V (‖x‖) dx ,

where V : R+ → R convex and non-decreasing.
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Associated generator:

Lf = ∆f −∇V · ∇f .

Famous Bakry-Émery criterion: if there exists λ > 0 such that

Hess V (x) ≥ λ Id, x ∈ Rn,

then
λ1(−L, µ) ≥ λ.

=⇒ If V is only convex (i.e. λ = 0 above) then BE criterion fails:
case of exponential power distribution of parameter α 6= 2.
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An important conjecture:

Conjecture (Kannan, Lovász and Simonovits, 1995)

There exists a universal constant C > 0, independent from
dimension n, such that any isotropic log-concave measure (i.e.∫
Rn |x · θ|2 µ(dx) = ‖θ‖2 for all θ ∈ Rn) satisfies

C ≤ λ1(−L, µ) ≤ 1.

Still open, a large field of investigation.

Aldéric Joulin Spectral gap for spherically symmetric measures



Gaussian case
Log-concave case

In 2003, Bobkov focuses on the spherically symmetric case.

Theorem (Bobkov, 2003)

If µ is spherically symmetric log-concave in Rn, n ≥ 1, then

n

13
∫
Rn ‖x‖2 µ(dx)

≤ λ1(−L, µ) ≤ n∫
Rn ‖x‖2 µ(dx)

.

In particular, spherically symmetric log-concave measures satisfies
the KLS conjecture, the isotropic condition meaning in our context∫

Rn

‖x‖2 µ(dx) = n.
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Our recent improvement of Bobkov’s result:

Theorem (Bonnefont-Joulin-Ma, 2014)

If µ is spherically symmetric log-concave in Rn, n ≥ 2, then

n − 1∫
Rn ‖x‖2 µ(dx)

≤ λ1(−L, µ) ≤ n∫
Rn ‖x‖2 µ(dx)

.

In particular

λ1(−L, µ) ∼
n→∞

n∫
Rn ‖x‖2 µ(dx)

.
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Idea of the proof, based on Bobkov’s approach:

Upper bound: trivial by taking in variational formula

λ1(−L, µ) = inf

{∫
Rn f (−Lf ) dµ

Varµ(f )
: f smooth , f 6= const

}
,

the linear function f (x) = x · 1.

Lower bound:

• Comparison with the spectral gap of the underlying
one-dimensional radial part (a slight improvement).

• Spectral estimate for the radial part (an important
improvement).
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Back to exponential power distribution of parameter α ≥ 1:

µ(dx) =
1

Z
e−‖x‖

α/α dx , x ∈ Rn.

Recall associated generator:

Lf (x) =

{
∆f (x)− ‖x‖α−2 x · ∇f (x) on Rn if 0 < α <∞;

∆f (x) on Bn if α =∞,

the latter endowed with Neumann’s boundary conditions.

Corollary

For fixed α ∈ [1,∞],

λ1(−L, µ) ∼
n→∞

n1−2/α.
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